
TCP Device Core / UDP
Device Core
The TCP Device Core for Blue Pill, core-protocol-tcp, allows users to send and to some extend
receive and process information of TCP to both ASCII and binary servers. Effectively, this can help
to bridge communication with devices where a dedicated device core is not available.

The UDP Device Core for Blue Pill, core-protocol-udp, enables the exact same functionality as for
TCP, just over a UDP connection.

This page describes how both device cores work, but using core-protocol-tcp as the example. The
device cores have both a very basic mode and some more complex features that can come in
handy in some cases. It has been designed to align with the corresponding TCP Client device core
on the UniSketch platform.

https://www.youtube.com/embed/6yIZPg8SN8c

Commands
The commands you can specify and send are ASCII by default and exactly what you see in the
string will be sent as ASCII, unless:

\n and \r will send a newline or carriage return (bytes 10 and 13)
\xHH will send a byte with the value HH (in hex): so \xFF will send a byte with value “255”
\p1, \p2 or \p3 (alternatively \d1, \d2, \d3, \h1, \h2, \h3, \i1, \i2, \i3, \f1/[scale],
\f2/[scale], \f3/[scale]) will insert a parameter value as defined by the meta value p1,
p2 and p3 in the device core parameters Toggle, On Trigger and Off Trigger.
The difference of using \p, \d, \i, \f and \h is whether the meta value is inserted as the byte
value (\p), inserted as a byte decimal number like “255” or “37” or “3” (\d - there is no
leading zeros), as a signed 32 bit integer (\i), as a floating point number (\fx/[scale]) or in
hexadecimal like FF or D0 or 00 (\h - in this case it’s always two characters and
uppercase).

Floating point

https://www.youtube.com/embed/6yIZPg8SN8c

Inserting a floating point number with \f is based on the parameter p1-p3 being an integer which
gets divided by the [scale] number. For example, if you insert \f2/10 then if meta value parameter
p2 is a variable with the value 55, it will get formatted as "5.5" in the message.

Example
Say you want to send a command to fire DMEMs on GVG100, in that case you want to send the text
string “03 01 DB 00” to fire DMEM 01, send “03 01 DB 01” to fire DMEM 02 etc.
So setting up a command like “03 01 DB \h1” and then using the “p1” meta value through a
constant in Reactor would allow you to distribute the same behavior across multiple hardware
components on a panel but vary the Dmem value easily.

Testing and tools
An advice is to use the "ipserver" binary tool provided by SKAARHOJ to set up a server to help
testing the functionality until you are confident that everything works as expected and would
function with the final target device.

Basic Configuration
The device core has some configuration fields:

https://github.com/SKAARHOJ/raw-panel-utils/tree/main/IPtools/binaries

IP address and port for the server should be straight forward.
The Init Command is a command string that will be sent to the server one time upon a
new connection.
The Ping Command will be send periodically. The period between its being sent will be
3000 ms in this case.
The Test Command is send when the Test trigger is activated (that's typically available as
a button in Reactor)

Cowboy Style
The most straight forward way to use the device core would be to send one-shot triggers
cowboystyle. This requires the minimum of configuration but provides the least amount of long
term convenience. This is probably a good place to get started.

https://wiki.skaarhoj.com/uploads/images/gallery/2022-10/CxAimage.png

Command Configuration
The device core allows you to configure a number of fixed commands. The advantage is that you
can bundle an A and B command into a single action for toggles etc. Also, this is the way you can
use meta values with the \p1,\p2, ... placeholders etc. Finally, it's actually possible to decode some
level of status back from the returned content of the device via a regular expressing.

https://wiki.skaarhoj.com/uploads/images/gallery/2022-10/S4Aimage.png

The Label field will be set as a fixed value in the device core so you can import it as a
label in Reactor
The Command A and B are available to easily create toggle functionality
The Matching Return Value field contains a regular expression. You can study the format
of regular expressions elsewhere, but they are basically very powerful and advanced
string matching patterns. Whenever the device core receives feedback from the server it
will run all regular expressions set up over each line and whenever there is a match, it will
take the value in parenthesis and store as the status value in the corresponding Status
parameter in the device core.

The commands configured here will be available through these parameters in the device core:

https://wiki.skaarhoj.com/uploads/images/gallery/2022-10/p8Himage.png

Toggle, Off Trigger and On Trigger allows various ways of using the command, either by a
one-shot type action or by a standard toggle action that keeps internal state in the
controller (without any confirmed feedback).
Label is the text label from configuration. You may want to use this to set a nice title in
the displays
Status is the match value from the last time the regular expression matched the return
content. Used carefully, this can provide some feedback from a remote system.

https://wiki.skaarhoj.com/uploads/images/gallery/2022-10/PVSimage.png

Examples
Forwarding the position of a fader, 0-1000
Forwarding the position value of a fader requires us to use the "\i" placeholder to insert a dynamic
value. The code below demonstrates a behavior called "VolumeFader" that is assumed to control
volume on a given channel on a device by sending text strings like "CHx_Vol_n", where x is the
channel number and n is the volume. In this case, we assume the device will access the value
range of n to go from 0 to 1000 so that it's 1:1 compatible with a Raw Panel fader position value.

 "VolumeFader": {
 "ConstantDefinitions": {
 "Channel": {
 "Description": "Channel",
 "Type": "Integer"
 },
 "DeviceId": {
 "Description": "Device Id",
 "Type": "Integer"
 }
 },
 "EventHandlers": {
 "trigger": {
 "AcceptTrigger": "Binary",
 "EventPreProc": {
 "A2B": {
 "InputMapping": {
 "Default": {
 "Threshold": 2,
 "RepeatThresholds": true,
 "OutputTriggerRising": "ActDown",
 "OutputTriggerFalling": "ActDown"
 }
 }
 }
 },
 "IOReference": {
 "Raw": "DC:protocol-tcp/{Behavior:Const:DeviceId}/cowboystyle/",
 "MetaValues": {
 "command": "CH\\d1_Vol_\\i2",

Description:

Lines 2-11 describes a constant definition. This will make the Configuration UI draw up two
fields that makes it easy to pick the device ID and Channel number for this behavior. This
makes the behavior suitable as a Master Behavior that can be easily reused. It would look
like this:

Lines 14-26: The event handler is set up to trigger on a binary input and the reason why
this works for a fader is because the Event Pre Processor in lines 15-26 will convert any
change to fader position into a binary trigger.
Lines 27-24 is the IO reference. When the fader is moved, leading to the generation of a
binary trigger, the IO reference is triggered too. The value of the fader is loaded into
parameter 2 and the value (constant) of the channel is loaded as parameter 1. Parameter
1 is inserted by \\d1 into the command while the fader value is inserted as \\i2. (The
double backslash is the same as a single backslash in JSON)

Forwarding the position of a fader, arbitrary interval
Forwarding the position value of a fader in a different range is more trouble, but can be done. We
will use a behavior variable for that. This is a variable only available in the scope of the behavior
definition.

 "p1": "Behavior:Const:Channel",
 "p2": "Behavior:LastEvent/Analog:Value"
 }
 }
 }
 }
 }

 "VolumeFader": {
 "ParentID": "SKAARHOJ:FaderMotorized",
 "Variables": {
 "FaderValue": {

https://wiki.skaarhoj.com/uploads/images/gallery/2022-12/TN1image.png

 "Name": "Volume",
 "MinMaxCenterValue": [
 0,
 100
],
 "DefaultToFirst": true
 }
 },
 "ConstantDefinitions": {
 "Channel": {
 "Description": "Channel",
 "Type": "Integer"
 },
 "DeviceId": {
 "Description": "Device Id",
 "Type": "Integer"
 }
 },
 "IOReference": {
 "Raw": "Var:FaderValue"
 },
 "EventHandlers": {
 "forward": {
 "AcceptTrigger": "Binary",
 "EventPreProc": {
 "A2B": {
 "InputMapping": {
 "Default": {
 "Threshold": 2,
 "RepeatThresholds": true,
 "OutputTriggerRising": "ActDown",
 "OutputTriggerFalling": "ActDown"
 }
 }
 }
 },
 "IOReference": {
 "Raw": "DC:protocol-tcp/{Behavior:Const:DeviceId}/cowboystyle/",
 "MetaValues": {
 "command": "CH\\d1_Vol_\\d2",

Description:

Line 2 defines that we will inherit the master behavior "SKAARHOJ:FaderMotorized". By
doing so we "just need" to add an IO reference (parameter) to be changed by the fader
and everything else will just work. But, we will extend it quite a bit with some tricks here.
Lines 3-12 define a behavior variable "FaderValue" which will be used to hold the value we
forward. The range is 0-100. This variable can only be used and seen from within this
behavior.
Lines 13-22 has the constants definitions as in the previous example
Line 24 is the IO reference (parameter) set to the local behavior variable, "FaderValue". So
far, what we have is a fader that will simply change the value of the variable "FaderValue"
when you move it. Not useful yet.
Line 27 defines a new event handler which is the code that will take the value of
"FaderValue" and forward when the fader is moved. It accepts a binary trigger and has the
analog values of the fader generating a binary trigger event when moved (just like in the
previous example).
Lines 44-46 defines the meta values for using the cowboystyle parameter for the TCP
device core. Again, the parameters p1 and p2 are loaded with dynamic values from IO
references, the Channel constant and the FaderValue respectively. Those are then
inserted as decimal bytes in the command string by the placeholders \\d1 and \\d2

Sending TCP commands with an encoder
This examples shows how to program an encoder to send a different command whether you turn it
clockwise or counterclockwise. It's build over the same idea as in the previous examples where the
behavior is design for use as a Master Behavior, using a constant definition for the channel and
Device ID.

 "p1": "Behavior:Const:Channel",
 "p2": "Var:FaderValue"
 }
 }
 }
 }
 },

 "VolumeUpDown": {
 "Description": "QSYS Volume Up/Down for Encoders/4Ways",
 "ConstantDefinitions": {
 "Channel": {
 "Description": "Channel",
 "Type": "Integer"
 },

 "DeviceId": {
 "Description": "Device Id",
 "Type": "Integer"
 }
 },
 "IOReference": {},
 "EventHandlers": {
 "down": {
 "AcceptTrigger": "Binary",
 "EventPreProc": {
 "P2B": {
 "InputPolarity": {
 "Default": {},
 "Negative": {
 "OutputTrigger": "ActDown",
 "OutputEdge": "Left"
 }
 },
 "SpeedmodeConfig": {}
 }
 },
 "BinaryEdgeFilter": "Left",
 "BinarySetValues": {},
 "IOReference": {
 "Raw": "DC:protocol-tcp/{Behavior:Const:DeviceId}/cowboystyle/",
 "MetaValues": {
 "command": "CH\\d1_Down",
 "p1": "Behavior:Const:Channel"
 }
 }
 },
 "up": {
 "AcceptTrigger": "Binary",
 "EventPreProc": {
 "P2B": {
 "InputPolarity": {
 "Default": {},
 "Positive": {
 "OutputTrigger": "ActDown",
 "OutputEdge": "Right"

Description:

The event handlers "down" and "up" in lines 15 and line 39 are almost identical and works
like this: They activate on a binary trigger, but requires a Left or Right edge press of a
four-way button. When encoders sends triggers into this behavior it gets captured and
converted by the "P2B" event pre processor that converts a positive encoder pulse into a
"right edge" binary trigger. Vice verse for a negative encoder pulse.
The IO reference in line 55-61 and 31-37 is similar to the ones for faders, but doesn't hold
any dynamic value other than the Channel ID from the constants

 }
 },
 "SpeedmodeConfig": {}
 }
 },
 "BinaryEdgeFilter": "Right",
 "BinarySetValues": {},
 "IOReference": {
 "Raw": "DC:protocol-tcp/{Behavior:Const:DeviceId}/cowboystyle/",
 "MetaValues": {
 "command": "CH\\d1_Up",
 "p1": "Behavior:Const:Channel"
 }
 }
 }
 },
 "FeedbackDefault": {
 "DisplayText": {
 "Title": "Ch. {Behavior:Const:Channel} Volume",
 "Textline1": "Up/Down"
 },
 "Intensity": "Dimmed"
 },
 "FeedbackConditional": {
 "10": {
 "ActiveIf": "Behavior:Events/trigger:TimeToNow \u003c 300",
 "Intensity": "On"
 }
 }
 }

In addition, since encoders often has displays, the Feedback Default and Feedback
Conditional is set up to show the channel name and blink when activated.

Revision #7
Created 25 October 2022 10:54:04 by Kasper
Updated 8 January 2025 08:30:40 by Kasper

